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The object of this paper is to attempt a quantitative evaluation of the proba-
bility of a given resonant structure. It is shown that the formation of a ‘“‘good”
resonant structure by chance is not very likely, and that the random probability
of the resonant structure of the solar system is less than 10-10,

A theory of the resonant structure of the
solar system by the present author (Mol-
chanov, 1968) follows from an earlier, more
general argument (Molchanov, 1966) that
oscillating systems which have attained
evolutionary maturity are inevitably reso-
nant, and that their structure is given by
sets of integers, just as in quantum systems.
This raises interesting questions about the
possible structure of planetary systems.

However, the resonance relations are not
satisfied exactly; there is always some
deviation. Because any real numbers can
be approximated by rational numbers with
arbitrary accuracy an important question
remains unanswered: What is the signi-
ficance of a statement about resonance?

I. UNPERTURBED SYSTEMS

Strictly speaking the problem of reson-
ance should be formulated in the following
manner: We are given (see Molchanov,
1968) a multiple oscillating system contain-
ing the small parameter e:

d3|dt = eF (I, b, €), (1)
where
¢ = {i}
is the phase vector, and
3={34

is the set of first integrals of the unper-
turbed system for ¢=0. System (I) is

periodic with period 27 for each of the
phases.

It would be necessary to find resonant
solutions of System (I) and to show that
the observed data correspond to the
solution with an accuracy acceptable in
celestial mechanical investigations. How-
ever, at present this problem has not even
been stated correctly, and its solution will
probably not be possible for a long time.

In general only the unperturbed system
is being studied,

de dt = w(3)
d3/dt = 0 (2)

and so the studies are of a heuristic and
probabilistic nature. Nevertheless, it is
necessary to retain one important require-
ment which arises from the nature of a
complete system—only those transforma-
tions of phase variables which retain
periodicity are allowed. It can be verified
that this is equivalent to the requirement
that the change of variables is of the form

¥=Ad, (3)

where A is a matrix with integer elements
which is unimodular, i.e., its determinant
is equal to unity.

The state of an unperturbed system is
completely defined by the frequency vector
o transformed by the formula

v=A4dw. (4)

The introduction of these transformations
enables all maximum resonant systems to
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be determined quite simply. Examine the
vector v with only one® rronzero component
vp,=v# 0.
(3)
We consider the arbitrary unimodular
matrix 4 and construct the vector w with
the help of the inverse matrix A=! (which
will also have integer elements since the
determinant of 4 = 1):

w=A"1y. (6)

From Eqs. (4) and (5) it is clear that,
except for the last row, the matrix 4 is
composed of coefficients of resonance
relations. And Eq. (6) shows that all
frequencies w; are essentially integral
multiples of ».

Thus each such unimodular matrix 4
and number v produce a resonance vector.
Conversely, as shown in (1) any resonance
vector w can be represented as in Eq. (6).

vy =0, vy =0, cees

II. STATEMENT OF THE PROBLEM

Such a description facilitates a quantita-
tive formulation of the reality of a sus-
pected resonant system. The basic object
is clear—if systems similar to the solar
system are extremely rare, they cannot
be a result of chance. Then the resonance
structure requires an explanation in terms
of evolution.

However, the words ‘rare” and
“similar”’ should first be defined precisely.
Rarity is most commonly explained in the
context of the theory of measurement as
belonging to a set of small measure.
But it is inconvenient to consider phase
volume as a measure, since the resonance
of a system is invariant to scale trans-
formation and the volume of the whole

space is infinite. Therefore ‘‘relative”
measure will be used,
s dwt
du = — 7
e H ol (M)

in addition to the finite parallelepipeds in
frequency space. It is more accurate to

1In a similar manner systems in which the
number of resonances is less than the number of
phases by two can also be studied. In this case
the vector v has two incommensurable nonzero
components.
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consider the space of relative frequencies
(as one of the frequencies can be assumed
as unity) whose dimension is less than the
number of frequencies by one and is equal
to the number of resonance relations. The
use of the quantity

AM=U’A—;D1:—1:

is more valid to measure the closeness of
the real vector to the theoretical (exactly
resonant) vector. The primes on the
product signs mean omission of the
frequency which has been chosen as unity.

It is even more important to define
what is meant by ‘‘similar to the solar
system.” Maximum resonant systems form
a dense set everywhere; by ‘“‘smearing’
each point of this denumerable set by the
parallelepiped (8) we shall obtain the
whole of phase space.

However, the four matrices which de-
scribe the structure of the planetary and
satellite systems of Jupiter, Saturn, and
Uranus possess important distinguishing
features which can be described intuitively
as nearly triangular with not very large
coefficients. This makes it possible to state
the heuristic and undoubtedly controver-
sial hypothesis that they are part of a
restricted class of “good” resonant sys-
tems. The exact meaning of the word in
quotes is given below for each of the
systems. The general method for calculat-
ing the rarity P of a given system is also
given below.

The real system being studied and the
ideal theoretical system which approxi-
mates it generate a parallelepiped in a
space with the logarithms of frequencies
as coordinates if the former is taken as the
“corner” and the latter as the center of the
parallelepiped. All the remaining equally
“good’ resonant systems are also enclosed
in this neighborhood. A set of systems not
“worse’’ than the given system is obtained
and its volume is calculated.

In the same space the “enveloping cube”
is constructed in which each of the sides is
determined by

(8)

a=mMwy, — Inwyy. (9)

Its volume is simply o™ 1.



106

The ratio P of these volumes is also
taken to be the quantitative measure of the
rarity of the system being studied. As the
neighborhoods of ideal points can intersect
and the points themselves can be situated
within the enveloping cube,

P < N@2"1d4ula™), (10)
where du is the magnitude given by Eq.
(8); the factor 2"! comes from the
equality of clockwise and anticlockwise
displacements; and N is the number of
matrices A equally ‘“good” as the one
under study.

III.

The structural matrix of the planetary
system (Molchanov, 1966) contains the
classical resonance 2:5 of Jupiter and
Saturn’s periods and appears in the
following form:

“GooD”’ MATRICES

1-1-2-1 0 0 0 0 0
01 0-3 0-1 0 0 O
00 1-2 1-1 1 0 0
0 0 0 16 0-2 0 0

Ag=|0 0 0 042-5 0 0 0
00 0 01 0-7 0 0
00 0 0 0 0 1-2 0
00 00 0 0 1 0-3
00 0 0 0-1 0 5 1

(11)

However, besides the resonance relation

2wy — By, & 0 (12)
it is possible to denote another

which is satisfied somewhat more accur-
ately than the classical relation. The
discrepancy of the classical relation is
0.0135 and that of the new relation 0.0059.
However, it is more correct to compare
the relative errors, which are 0.0067 and
0.0059, respectively.

Changing the fifth row with coefficients
of relation (13)—the second with the
difference of the second and third, and the
sixth with a linear combination of the four
last resonance relations—it is possible to
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construct another structural matrix of the
planetary system,

OOOOOOO‘—"—'

Anew =

|
OHI—‘N}HM)—'HO

'—ow»—nooooo
!

!

SO0
OOOCOOl—‘i—‘w
OOOOO’—‘N'—"—‘
!—-‘wO'—‘F—'OOOO

0
0
1
0
-2 _
1
0
0
0

(14)

The theoretical frequency vectors gener-
ated by these two matrices approximate
the real vector equally well, as Table 1
shows. Therefcre the theoretical possi-
bility of intersection of neighborhoods of
ideal points is realized even for planetary
systems. It has already been shown that
the question that arises, as to which of
the matrices is the correct one, does not
make sense in the framework of unper-
turbed equations; it requires the study of
a complete system. Most of all, both
variants are bad because they do not take
into account the structural hierarchy of
planetary systems. Our solar system com-
prises at least two groups: Mars is the last
of the interior group of rocky planets; it is
separated from Jupiter, which in turn is
the first of the exterior group of gaseous
planets, by a frequency interval greater
than two “octaves.”

Both variants of the structural matrices
of planetary systems have pros and cons.
The first matrix reduces to a more simple
rational approximation for frequencies,
whereas the second is considerably closer
to structural matrices of satellite systems
when one considers the most important
properties of the second matrix. The latter
feature is useful because it enables a
sufficiently general definition of the class
of systems with ‘“good” resonances in
each of the four cases. It seems inevitable
that the principles of planetary and
satellite formation will be defined more
precisely in the future. This will result in
the class of plausible ‘“equally good”
systems being reduced, and therefore will
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TABLE I

FREQUENCIES OF THE PLANETARY SYSTEM

Planet Wabs wel Awlw Wnew dow
Mercury 49.2508 49.2000 0.0010 49.1904 0.0012
Venus 19.2816 19.2571 0.0013 19.2619 0.0010
Earth 11.8618 11.8286 0.0028 11.8333 0.0024
Mars 6.3067 6.2857 0.0033 6.2857 0.0033
Jupiter 1.0000 1.0000 — 1.0000 —_
Saturn 0.40269 0.4000 0.0069 0.40476 —0.0051
Uranus 0.141191 0.142857 —0.0118 0.142857 —0.0118
Neptune 0.071984 0.071428 0.0077 0.071428 +0.0077
Pluto 0.047499 0.047619 —0.0025 0.047619 —0.0025

only strengthen the argument developed
here.

Comparison of the structural matrices of
satellite systems

1 0 —2 0 0 0 0 0
0 1 0 -2 0 0 0 0
0 0 1 0 -2 -1 0 -2
4. |00 0 1 -2 1 0 1
h—10 0 0 0 1 -2 -2 0
0 0 0 0 0 3 —4 0
0 0 0 0 0 1 0 -5
0 0 0 0 0 0 -1 4
(15)
1 -1 -1 0 —1]
0 1 -1 -2 1
4,=l0 o0 —2 1 5 (16)
0 0 1 -6 6
0 0 -2 3 2
1 -2 0 0 V
0 1 -2 0
Ay=]o o —3 7 (17)
0 0 -1 2|
reveals that they are almost triangular.

Because of this property 4.,,, is preferred
over A;; and this property serves as the
basic definition of the class of “good”
madtrices.

The four cases of 4 can be represented as
differences of two matrices—the “skeletal”
part S and the “‘triangular” part 7

A=8-T. (18)
The matrix § in block form is given by

S:Hﬁ" °1. (19)

where o is a third order unimodular matrix
(second order for Jupiter’s satellites) and
E is the unit matrix in the space compli-
mentary to . Matrix 7' has zeros on its
main diagonal (where matrix § has
unities), everywhere below the diagonal
and in positions occupied by matrix o.
In other words wherever § is nonzero T
is zero and vice versa. In this sense A is
not simply a difference but a superposition
of matrices S and —7'. Below the diagonal,
matrix 4 cannot have more than three
nonzero elements entering the matrix o;
hence the name ‘‘nearly triangular” is
given to such matrices.

Unfortunately, the second and impor-
tant property of ‘“‘good” matrices, namely
possessing ‘“‘not very large” coefficients,
cannot be stated in a sufficiently general
form. But it can be described as follows:
Basically the triangular parts are com-
posed of zeros and unities and contain a
small number of twos.2 Threes, fours,
fives, and sevens (unique in the whole
solar system) are found only in “heads” o
of the skeletal parts of the structural
matrix. Apart from this, nonzero elements
of the triangular parts gravitate to the
main diagonal and tend to be positive.
These properties are seen more clearly if
the “heads’ o and the triangular parts are
written separately omitting all the known

2 The only exception—mnamely six—suggests
that the principle behind the structure of
planetary systems is not quite well understood.
Somehow the hierarchy has to be taken into
account, but at the present it is not evident how
this can be accomplished.
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zero elements (o and 7" without a subscript
relate to the planetary system):

1 -2 0 3 4 0
o=|1 0 —3|; op=|1 0 —5|;
14
37
-1 2H(20)

0 0
1 0
Lo (21)
N0
1 0
2 1
0 20 0 0 0 0
0 0 0 0
T, = 1 0 2 (22)
2 —1N\0 —1
2 2\
-1 5] (23
B

IV. Tae NuMBER OF “Goop”’
MATRICES

The fact that the anatomies of such
structural matrices have so much in
common justifies the definition of another
set of systems in terms of 7' and o. This
set of systems is defined as being not
“worse”’ than the given system. Any such
definition must be based on the properties
of matrices 7' and o for the specific system
being studied.

Planetary System

The conditions 7' must satisfy, according
to the properties of matrices (21), are

(1) Beyond the three diagonals adjacent
to the main diagonal there should not be
more than three unities. The remaining
20 elements are zeros.
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(2) There should not be more than two
negative elements.

(3) There can only be one location with
a number greater than 2 and such a
number should be below 7.

The matrix o can be completely defined
by two rows, i.e., six elements. In the case
of planetary systems a sufficiently restric-
ted class is obtained from two conditions:

(a) There should be at least four
positions with unities and zeros.
{b) No element should be greater than 6.

Although any “good’’ matrix 4 produces
“good” matrices 7' and o, the reverse is
not always true. Ideal vectors with
negative frequencies or frequencies from
beyond the boundaries of the enveloping
cube of the system can give a ‘“‘good”
matrix like 4.

Therefore, the total number N of
systems not ‘‘worse’’ than the given system
is estimated (from above) by

N NpN,. (25)
Turning to the calculation of Np: On
the three diagonals in matrix 7' one of the
18 positions is occupied by numbers
between 3 and 7, and the remaining places
contain 0’s, 1’s, or 2’s. Therefore the total
number of combinations in which vacant
positions can be filled is given by

!
N, = L51 317 = 1.15 x 101°
11171

(26)
The three unities in the upper corner of
matrix 7 can occupy the 15 vacant
positions in n, ways, where n, is given by

15!

= m = 4.55 X 102.

The two minus signs still have to be
accounted for. There are 21 nonzero

elements and so
ng=211/21191=2.1 x 102.  (28)

By multiplying these numbers we obtain
the number of “good’’ matrices 7':

Np<nynsng=1.1x 1015, (29)
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When calculating the number of good
matrices, o, it is necessary to take into
account the requirement that the fre-
quencies must be positive. If the signs in
the first two columns of matrix o are
changed independently, this is equivalent
to changing the signs of the first two
frequencies and will give positive fre-
quencies in one case out of four. In all
other respects the reasoning is the same.

Thus, in four positions we have zeros
and unities, and in two positions we have
numbers from —6 to —2 and from 2 to 6.
This gives

6!

1 4 2 4
Ny < g75;3" 102 = 3.05 x 10%.

(30)
So the total number of “good” matrices
for planetary systems is extremely large:

N < 3.35 x 1019, (31)

Saturn’s Satellites

In matrix 7 two diagonals are charac-
teristic and there are three nonzero
elements in the corner; the number of
minus signs is two. As none of the numbers
is greater than 2, the same arguments that
have been used before give

n,=319=5.9 x 10%; (32)
further
15! . 3
Ny = 37131 23 =3.64 x 10 (33)

where the factor 2% appears because
unities or twos may be present in the
corner of the matrix. The number ng is
obtained by taking into account the signs

2
18x12_ g (34)

"= o1
Therefore

Ny <ningng=1.67x 1019 (35)

The distribution of positions is somewhat
changed for matrix o and we obtain the
figure

1 6!

N, <4313~ 33 x 10% =1.35 x 10°,

313! (36)
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Finally

N, < 2.25 x 1018, 37
h

Uranus’ Satellites

Here, there are no characteristic dia-
gonals in matrix T'; so the two factors n,
and n, are not separable. The only negative
number is a 2, the others being zeros and
unities. Therefore zeros and unities could
occur in six out of seven places and 2
could occur in one place; a minus sign
should occur somewhere. This gives

Np<Tx17x2%=3814x 103 (38)

The arrangement of matrix ¢ is the most
complicated of all. Zeros, unities, and twos
occur in three positions; together with
possible sign changes this gives five
combinations. Three places are taken by
3’s, 4’s, and 5’s giving six combinations.
Thus

1 6!

2 9 343 5
N, =7 57375°6° =135 x 10°% (39)
Finally,
N, < 4.24 x 108, (40)
Jupiter’s Satellites

There are five positions in 7'; each
position could be occupied by one of five
numbers—zeros, unities, and twos, each
positive or negative. Hence,

Np < 5°=3.12 x 102, (41)

There are only two important positions in
o, but there is the number 7. Therefore

N,<72=49. (42)
This means that
N, < 1.52 x 108, (43)

V. Tae RArITY OF “GoOD’’ SYSTEMS

From the evaluation in the previous
section it is seen that the number of good
systems is indeed very large. Nevertheless,
the total volume occupied in the logarithm
of frequency space by all the systems not
“worse” than planetary systems forms a
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very small part of the enveloping cube.

From Table I we find
Ap=1.10 x 10720 (44)
a = 6.96 (45)

and substituting these numbers in Eq. (10)
for P, we obtain

P<1.7x1075; (46)

This estimate gives the rarity only of the
planetary system. The four numbers which
give the rarity of the planetary system and
the three satellite systems are necessary to
obtain the rarity of the whole system.

The values of Au and @ are necessary for
the calculation and they can be extracted
from Table II of Molchanov (1968) on the
theoretical and observed frequencies® of
satellite systems.

TABLE II

VaLues ¥roMm TABLE IT oF
MowrcraNOV (1968)

Saturn’s Satellites
Aup = 2.08 x 10-17
a=4.43
(32)7 = 2.64 x 102

Uranus’ Satellites
Ap = 3.03 x 10-10

a=231
(3a)t=1.8
Jupiter’s Satellites
Ap = 5.7 x 10-8
a=224
(3a)3 = 1.4

The results of the calculations are as
follows:

P,<18x10™* (47)
Py <7.2x 10~2 (48)
P, <6.3x 1073, (49)

3 This is the frequency scale given by the
frequency of the most massive body in any
given system.
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Therefore the rarity of the solar system is
given by the very small number

P’ <1.4x 10712 (50)

In order to evaluate the result obtained we
observe that the number of stars in our
galaxy is of the order of 10!!. Even if each
star were to be provided with a planetary
system, our galaxy would not be sufficient
to obtain by chance even one system
similar to the solar system. At the present
time people do not venture to press their
exclusiveness to such an extent. Rather,
the opposite tendency can be observed.

The arguments presented herein do not
constitute a strict proof. Only a formal
theory of resonance states in a complete
system could provide such a proof. Thus
the applicability of the theory of per-
turbed Hamiltonian systems to the
solar system is quite questionable. This
theory which in fact comes from celestial
mechanics and forms one of the most
interesting branches of mathematics is
based on the general state of the frequency
vector of a system.

NotE ApDED IN ProoF 29 May 1969

The author is indebted to S. F. Dermott
(1969) who indicated an error in the value
for the frequency of Miranda quoted by
Molchanov (1968). The correct value,
Wy = 6.157 leads to a resonance vector
(1-1-10-1) in A,, instead of the in-
correct (1 —1 —1 0) and to the correct value
of Wypeor = 6.181.
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