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The object of this paper is to attempt a quantitative evaluation of the proba- 
bility of a given resonant structure. It is shown that the formation of a "good" 
resonant structure by chance is not very likely, and that the random probability 
of the resonant structure of the solar system is less than 10 -10 . 

A theory of the resonant structure of the 
solar system by the present author (Mol- 
chanov, 1968) follows from an earlier, more 
general argument (Molehanov, 1966) tha t  
oscillating systems which have attained 
evolutionary matur i ty  are inevitably reso- 
nant, and tha t  their structure is given by 
sets of integers, just as in quantum systems. 
This raises interesting questions about the 
possible structure of planetary systems. 

However, the resonance relations are not 
satisfied exactly; there is always some 
deviation. Because any real numbers can 
be approximated by rational numbers with 
arbitrary accuracy an important question 
remains unanswered: What  is the signi- 
ficance of a statement about resonance? 

I. UNPERTURBED SYSTEMS 

Strictly speaking the problem of reson- 
ance should be formulated in the following 
manner: We are given (see Molchanov, 
1968) a multiple oscillating system contain- 
ing the small parameter E: 

dc~/dt = o)(3) + E~(3 ,  ¢b, c) 

d~ /d t  = ~ ( 3 ,  ¢~, ~), (1) 

where 
¢ = {¢i)  

is the phase vector, and 

is the set of first integrals of the unper- 
turbed system for ~ = 0. System (I) is 

periodic with period 2~r for each of the 
phases. 

I t  would be necessary to find resonant 
solutions of System (I) and to show tha t  
the observed data correspond to the 
solution with an accuracy acceptable in 
celestial mechanical investigations. How- 
ever, at present this problem has not even 
been stated correctly, and its solution will 
probably not be possible for a long time. 

In general only the unperturbed system 
is being studied, 

dd~/dt = o)(3) 

dY~/dt = 0 (2) 

and so the studies are of a heuristic and 
probabilistic nature. Nevertheless, it is 
necessary to retain one important require- 
ment which arises from the nature of a 
complete system--only those transforma- 
tions of phase variables which retain 
periodicity are allowed. I t  can be verified 
tha t  this is equivalent to the requirement 
that  the change of variables is of the form 

W = A ¢ ,  (3) 

where A is a matrix with integer elements 
which is unimodular, i.e., its determinant 
is equal to unity. 

The state of an unperturbed system is 
completely defined by the frequency vector 
oJ transformed by the formula 

v = A ~ o .  ( 4 )  

The introduction of these transformations 
enables all maximum resonant systems to 
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be determined quite simply. Examine the 
vector v with only one I rmnzero component 

v l  = 0 ,  v 2  = 0 ,  • • . ,  v n  = v # 0 .  

(5) 
We consider the arbitrary unimodular 

matrix A and construct the vector to with 
the help of the inverse matrix A -1 (which 
will also have integer elements since the 
determinant of A = 1) : 

ca = A - 1  v .  (6)  

From Eqs. (4) and (5) it is clear that,  
except for the last row, the matrix A is 
composed of coefficients of resonance 
relations. And Eq. (6) shows that  all 
frequencies eoi are essentially integral 
multiples of v. 

Thus each such unimodular matrix A 
and number v produce a resonance vector. 
Conversely, as shown in (1) any resonance 
vector ca can be represented as in Eq. (6). 

I I .  S T A T E M E N T  OF T H E  I:)ROBLEM 

Such a description facilitates a quantita- 
tive formulation of the reality of a sus- 
pected resonant system. The basic object 
is clear--ff systems similar to the solar 
system are extremely rare, they cannot 
be a result of chance. Then the resonance 
structure requires an explanation in terms 
of  evolution. 

However, the words "rare" and 
"similar" should first be defined precisely. 
Rari ty  is most commonly explained in the 
context of the theory of measurement as 
belonging to a set of small measure. 
But  it is inconvenient to consider phase 
volume as a measure, since the resonance 
of a system is invariant to scale trans- 
formation and the volume of the whole 
space is infinite. Therefore "relative" 
measure will be used, 

doJi d~ = ]--[" "¢o'i (7) 
i 

in addition to the finite parallelepipeds in 
frequency space. I t  is more accurate to 

1 I n  a s i m i l a r  m a n n e r  s y s t e m s  i n  w h i c h  t h e  
n u m b e r  o f  r e s o n a n c e s  is  l e s s  t h a n  t h e  n u m b e r  o f  
p h a s e s  b y  t w o  c a n  a l so  be  s t u d i e d .  I n  t h i s  c a s e  
t h e  v e c t o r  v h a s  t w o  i n c o m m e n s u r a b l e  n o n z e r o  
c o m p o n e n t s .  

consider the space of relative frequencies 
(as one of the frequencies can be assumed 
as unity) whose dimension is less than the 
number of frequencies by one and is equal 
to the number of resonance relations. The 
use of the quanti ty 

l--f ' A~ = i ~i  (8) 
i 

is more valid to measure the closeness of 
the reM vector to the theoretical (exactly 
resonant) vector. The primes on the 
product signs mean omission of the 
frequency which has been chosen as unity. 

I t  is even more important to define 
what is meant by "similar to the solar 
system." Maximum resonant systems form 
a dense set everywhere; by "smearing" 
each point of this denumerable set by the 
parallelepiped (8) we shall obtain the 
whole of phase space. 

However, the four matrices which de- 
scribe the structure of the planetary and 
satellite systems of Jupiter, Saturn, and 
Uranus possess important distinguishing 
features which can be described intuitively 
as nearly triangular with not very large 
coefficients. This makes it possible to state 
the heuristic and undoubtedly controver- 
sial hypothesis tha t  they are part  of a 
restricted class of "good" resonant sys- 
tems. The exact meaning of the word in 
quotes is given below for each of the 
systems. The general method for calculat- 
ing the rarity P of a given system is also 
given below. 

The real system being studied and the 
ideal theoretical system which approxi- 
mates it generate a parallelepiped in a 
space with the logarithms of frequencies 
as coordinates if the former is taken as the 
"corner" and the latter as the center of the 
parallelepiped. All the remaining equally 
"good" resonant systems are also enclosed 
in this neighborhood. A set of systems not 
"worse" than the given system is obtained 
and its volume is calculated. 

In the same space the "enveloping cube" 
is constructed in which each of the sides is 
determined by 

a = hi ~ma~ - In comic. (9) 

Its volume is simply a "-1. 
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The ratio P of these volumes is also 
taken to be the quanti tat ive measure of the 
rar i ty  of the system being studied. As the 
neighborhoods of ideal points can intersect 
and the points themselves can be situated 
within the enveloping cube, 

P < 2~'(2n-1~l~/an-1), (10) 

where A~ is the magnitude given by Eq. 
(8); the factor 2 "-1 comes from the 
equality of clockwise and anticloekwise 
displacements; and N is the number of 
matrices A equally "good" as the one 
under study. 

I I I .  "GooD" MATRICES 

The structural matrix of the planetary 
system (Molchanov, 1966) contains the 
classical resonance 2:5 of Jupi ter  and 
Saturn's periods and appears in the 
following form: 

1 - -1  
0 1 
0 0 
0 0 

A, l=  0 0 
0 0 
0 0 
0 0 
0 0 

--2 --1 0 0 0 0 0 
0 --3 0 --1 0 0 0 
1 - - 2  1 - -1  1 0 0 
0 1 --6 0 --2 0 0 
0 0 +2 --5 0 0 0 
0 0 1 0 - - 7  0 0 
0 0 0 0 1 - - 2  0 
0 0 0 0 1 0 - - 3  
0 0 0 - - 1  0 5 1 

(11 

However, besides the resonance relation 

2oJ~ - 5oJ b ~ 0 (12) 

it is possible to denote another 

oJ~ - -  2~o b - -  co$ - -  we -~ 0 (13 )  

which is satisfied somewhat more accur- 
ately than the classical relation. The 
discrepancy of the classical relation is 
0.0135 and tha t  of the new relation 0.0059. 
However, it is more correct to compare 
the relative errors, which are 0.0067 and 
0.0059, respectively. 

Changing the fifth row with coefficients 
of relation (13)--the second with the 
difference of the second and third, and the 
sixth with a linear combination of the four 
last resonance relat ions-- i t  is possible to 

construct another structural matr ix of the 
planetary system, 

Anew 

1 - 1  - 2 - 1  0 0 0 0 0 
0 1 - 1  - 1  - 1  0 - 1  0 0 
0 0 1 - 2  1 - 1  1 0 0 
0 0 0 1 - 6  0 - 2  0 0 
0 0 0 0 1 - 2  - 1  0 - 1  
0 0 0 0 0 1 - 2 - 1  - 1  
0 0 0 0 0 0 1 - 2  0 
0 0 0 0 0 0 1 0 - 3  
0 0 0 0 0 0 0 1 - 1  

(14) 

The theoretical frequency vectors gener- 
ated by  these two matrices approximate 
the real vector equally well, as Table I 
shows. Therefcre the theoretical possi- 
bility of intersection of rmighborhoods of 
ideal points is realized even for planetary 
systems. I t  has already been shown tha t  
the question tha t  arises, as to which of 
the matrices is the correct one, does not  
make sense in the framework of unper- 
turbed equations; it requires the study of 
a complete system. Most of all, both 
variants are bad because they do not  take 
into account the structural hierarchy of 
planetary systems. Our solar system com- 
prises at least two groups: Mars is the last 
of the interior group of rocky planets; it is 
separated from Jupiter ,  which in turn is 
the first of the exterior group of gaseous 
planets, by a frequency interval greater 
than two "octaves."  

Both variants of the structural matrices 
of planetary systems have pros and cons. 
The first matr ix reduces to a more simple 
rational approximation for frequencies, 
whereas the second is considerably closer 
to structural matrices of satellite systems 
when one considers the most important  
properties of the second matrix. The lat ter  
feature is useful because it enables a 
sufficiently general definition of the class 
of systems with "good" resonances in 
each of the four cases. I t  seems inevitable 
tha t  the principles of planetary and 
satellite formation will be defined more 
precisely in the future. This will result in 
the class of plausible "equally good" 
systems being reduced, and therefore will 
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TABLE I 

FREQUENCIES OF THE PLANETARY SYSTEM 

107 

Planet o~,,aa ¢.o¢, Amlm oJ..~ AoJIo~ 

Mercury  49.2508 49.2000 0.0010 49.1904 0.0012 
Venus  19.2816 19.257I 0.0013 19.2619 0.0010 
E a r t h  11.8618 11.8286 0.0028 11.8333 0.0024 
Mars 6.3067 6.2857 0.0033 6.2857 0.0033 
J u p i t e r  1.0000 1.0000 - -  1.0000 - -  
Sa tu rn  0.40269 0.4000 0.0069 0.40476 -0 .0051 
U ranus  0.141191 0.142857 --0.0118 0.142857 -0 .0118  
N e p t u n e  0.071984 0.071428 0.0077 0.071428 +0.0077 
P lu to  0.047499 0.047619 -0 .0025 0.047619 -0 .0025 

only  s t rengthen  the  a rgument  developed 
here. 

Comparison of  the  s t ruc tura l  matr ices  of  
satellite systems 

1 0 - 2  
0 1 0 
0 0 1 
0 0 0 A 

~ =  0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 
--2 0 

0 --2 
1 --2 
0 1 
0 0 
0 0 
0 0 

1 - 1  
0 1 

A ~ =  0 0 
0 0 
0 0 

1 - 2  
A ~ =  0 1 

0 0 
0 0 

- 1  0 - 1  
- 1  - 2  1 
- 2  1 5 

1 - 6  6 
- 2  3 2 

0 0 
- 2  0 
- 3  7 
- 1  2 

0 0 0 
0 0 0 

- 1  0 - 2  
1 0 1 

- 2  - 2  0 
3 - 4  0 
1 0 - 5  
0 - 1  4 

(15) 

(16) 

(17) 

reveals t h a t  t he y  are a lmost  t r iangular .  
Because of  this p rope r ty  A.ew is preferred  
over  Ak~ and this p rope r ty  serves as the  
basic definit ion of  the  class of  "good"  
matrices.  

The  four  cases of  A can be represented  as 
differences of two m a t r i c e s - - t h e  "ske le ta l"  
pa r t  S and the  " t r i angu la r "  pa r t  T 

A = S -  T. (18) 

The  ma t r ix  S in block form is given b y  

S - -  E 0 (19) 
0 (r ' 

where o is a th i rd  order  unimodular  ma t r ix  
(second order  for Jup i te r ' s  satellites) and 
E is the  uni t  ma t r ix  in the  space compli- 
m e n t a r y  to  a. Matr ix  T has zeros on its 
main  diagonal (where ma t r ix  S has 
unities), everywhere  below the  diagonal 
and in positions occupied b y  ma t r ix  a. 
In  o ther  words wherever  S is nonzero T 
is zero and vice versa. In  this sense A is 
not  s imply a difference bu t  a superposit ion 
of  matr ices  S and - T .  Below the  diagonal,  
ma t r ix  A cannot  have  more t h an  th ree  
nonzero elements  enter ing the  ma t r ix  a;  
hence the  name "near ly  t r i angu la r"  is 
given to  such matrices.  

Unfor tuna te ly ,  the  second and  impor-  
t a n t  p rope r ty  of "good"  matrices,  namely  
possessing "no t  v e ry  large"  coefficients, 
cannot  be s ta ted  in a sufficiently general  
form. Bu t  it  can be described as follows: 
Basically the  t r iangular  par ts  are com- 
posed of  zeros and  unities and contain a 
small number  of  twos. 2 Threes,  fours, 
fives, and sevens (unique in the  whole 
solar system) are found only  in "heads"  a 
of  the  skeletal par t s  of  the  s t ruc tura l  
matr ix .  Apar t  f rom this, nonzero e lements  
of  the  t r iangular  par t s  g rav i ta te  to the  
main  diagonal and  t end  to be positive. 
These propert ies  are seen more clearly if  
the  "heads"  a and the  t r iangular  par t s  are 
wr i t ten  separate ly  omi t t ing  all the  known 

The  only  e x c e p t i o n - - n a m e l y  s i x - - s u g g es t s  
t h a t  t he  pr inciple  b eh i n d  the  s t ruc tu re  of  
p l a n e t a r y  sys t ems  is no t  qui te  well unders tood .  
Somehow the  h ie ra rchy  has  to be t a k e n  in to  
account ,  b u t  a t  t he  p resen t  i t  is no t  ev iden t  how 
this  can  be accompl ished.  
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zero elements (a and T without a subscript 
relate to the planetary system) : 

1 - 2  0 ; 3 - 4  0 ; 
a = 1 0 - - 3  a b = 1 0 - - 5  

0 1 --1 0 --1 4 

a S =  
-2  1 5 ;  -3  7 

1 - - 6  6 a z ~ =  - -1  2 (20) 
--2 3 2 

~ 1 2  1"-,,,,0 " 0 0 0 0 
1 1 " . ~  1 0 0 

o o 

~ . , .  12 ~ ' ~  

2-. .0 0 0 0 0 
2 - ¢  0 0 0 

2 - %  0 2 
"-.~ -- 1 "-,.O. -- 1 

\ 2  2 \ 0  

1 1 0 1 

T$ = ~ 1 2 -1  

(21) 

(22) 

(23) 

(24) 

IV.  THE NUMBER OF " G o o D "  
MATRICES 

The fact tha t  the anatomies of such 
structural matrices have so much in 
common justifies the definition of another 
set of systems in terms of T and a. This 
set of systems is defined as being not 
"worse" than the given system. Any such 
definition must be based on the properties 
of matrices T and a for the specific system 
being studied. 

Planetary System 

The conditions T must satisfy, according 
to the properties of matrices (21), are 

(1) Beyond the three diagonals adjacent 
to the main diagonal there should not be 
more than three unities. The remaining 
20 elements are zeros. 

(2) There should not be more than two 
negative elements. 

(3) There can only be one location with 
a number greater than 2 and such a 
number should be below 7. 

The matrix a can be completely defined 
by two rows, i.e., six elements. In the case 
of planetary systems a sufficiently restric- 
ted class is obtained from two conditions: 

(a) There should be at least four 
positions with unities and zeros. 

(b) No element should be greater than 6. 

Although any "good" matrix A produces 
"good" matrices T and a, the reverse is 
not always true. Ideal vectors with 
negative frequencies or frequencies from 
beyond the boundaries of the enveloping 
cube of the system can give a "good" 
matrix like .4. 

Therefore, the total number N of 
systems not "worse" than the given system 
is estimated (from above) by 

N .< N~ N~. (25) 

Turning to the calculation of N~: On 
the three diagonals in matrix T one of the 
18 positions is occupied by numbers 
between 3 and 7, and the remaining places 
contain O's, l's, or 2's. Therefore the total 
number of combinations in which vacant 
positions can be filled is given by 

18! 
51 317=1.15× 10 l° (26) 

nl 1!17! 

The three unities in the upper corner of 
matrix T can occupy the 15 vacant 
positions in n2 ways, where n2 is given by 

15! 
4.55 x 102. (27) n2 - -  3!  12! 

The two minus signs still have to be 
accounted for. There are 21 nonzero 
elements and so 

n a = 2 1 ! / 2 ! 1 9 ! = 2 . 1  × 102 . (28) 

By multiplying these numbers we obtain 
the number of "good" matrices T: 

IY~ < nln2ns = 1.1 × 10 is. (29) 
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W he n  calculat ing the  number  of  good 
matrices,  a, i t  is necessary to  t ake  into 
account  the  requ i rement  t h a t  the  fre- 
quencies mus t  be positive. I f  the  signs in 
the  first two columns of  ma t r ix  a are 
changed independent ly ,  this is equivalent  
to  changing the  signs of  the  first two 
frequencies and will give posi t ive fre- 
quencies in one case out  of  four. In  all 
o ther  respects  the  reasoning is the  same. 

Thus,  in four  positions we have  zeros 
and  unities, and  in two positions we have  
numbers  f rom - 6  to  - 2  and  f rom 2 to  6. 
This gives 

1 6! 4 
N ~ < ~ 3  l0  s = 3 . 0 5 X  104 . (30) 

So the  to ta l  number  of  "good"  matr ices  
for p l ane ta ry  systems is ex t remely  large: 

N < 3.35 x 1019 . (31) 

Saturn's Satellites 

In  ma t r ix  T two diagonals are charac- 
ter is t ic  and there  are three  nonzero 
elements  in the  corner ;  the  number  of  
minus signs is two. As none of  the  numbers  
is grea ter  t h a n  2, the  same arguments  t h a t  
have  been used before give 

n l  = 31° = 5.9 x 104; (32) 

fu r the r  

n 2 ~ _ _  15! 2s = 3.64 x l0  s (33) 
3! 12! 

fac tor  23 appears  because where the  
unities or twos m a y  be present  in the  
corner of  the  matr ix .  The  number  n8 is 
ob ta ined  by  taking  into account  the  signs 

13 x 12 
n3 2 x 1 78. (34) 

Therefore  

NT < nln2ns = 1.67 x 101°. (35) 

The  dis t r ibut ion of  positions is somewhat  
changed for ma t r ix  a and  we obta in  the  
figure 

1 6! 
N¢ < 4 313! 3 a X 10 3 =  1.35 x 105. (36) 

Final ly  
N b < 2.25 x 1015. (37) 

Uranus' Satellites 
Here,  there  are no character is t ic  dia- 

gonals in ma t r ix  T ;  so the  two factors  n l  
and n2 arc not  separable. The  only  negat ive  
number  is a 2, the  others  being zeros and  
unities. Therefore  zeros and  unit ies could 
occur  in six out  of  seven places and 2 
could occur in one place;  a minus sign 
should occur somewhere. This gives 

N ~ < 7 x  7 x 2 6 = 3 . 1 4 X  l0 s . (38) 

The  a r rangement  of  ma t r ix  a is the  most  
complicated of  all. Zeros, unities, and twos 
occur in three  posit ions;  toge ther  with 
possible sign changes this  gives five 
combinations.  Three  places are t aken  b y  
3's, 4's, and  5's giving six combinations.  
Thus  

1 6! 5 a 6 a = l . 3 5 x  105 . (39) N~ = ~  3! 3r 

Finally,  

N$ < 4.24 x l0  s. (40) 

Jupiter's Satellites 
There  are five positions in T ;  each 

posit ion could be occupied b y  one of  five 
numbers - -ze ros ,  unities, and  twos, each 
posit ive or negative.  Hence,  

NT < 55 = 3.12 x 10 a. (41) 

There  are only two im p o r t an t  positions in 
a, bu t  there  is the  n u m b er  7. Therefore  

N a < 73 = 49. (42) 

This  means t h a t  

zV~ < 1.52 x 105. (43) 

V. THE RARITY OF "GOOD" SYSTEMS 

F r o m  the  evaluat ion in the  previous 
section i t  is seen t h a t  the  number  of  good 
systems is indeed v e ry  large. Nevertheless,  
the  to ta l  volume occupied in the  logar i thm 
of  f requency  space b y  all the  systems no t  
"worse"  t h a n  p l ane ta ry  systems forms a 
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ve ry  small  p a r t  of  the  enveloping cube. 
F r o m  Tab le  I we find 

A/z ---- 1.10 × 10 -2° (44) 

a = 6.96 (45) 

and  subs t i tu t ing  these num ber s  in Eq.  (10) 
for  P ,  we ob ta in  

P ~< 1.7 × 10-5; (46) 

This  e s t ima te  gives the  r a r i t y  only  of  the  
p l a n e t a r y  sys tem.  The  four  number s  which 
give the  r a r i t y  of  the  p l a n e t a r y  sys t em and  
the  three  satell i te sys tems  are necessary to  
ob ta in  the  r a r i t y  of  the  whole sys tem.  

The  values  of  A~ and  a are necessary  for  
the  calculat ion and  t h e y  can be ex t r ac t ed  
f rom Table  I I  of  Molchanov (1968) on the  
theore t ica l  and  observed  frequencies a of  
satel l i te  sys tems.  

TABLE I I  

VALUES FROM TABLE I I  oF 
MOLCHANOV (1968) 

Saturn's Satellites 
A~ = 2.08 × 10 -17 

a = 4.43 
(½a) 7 = 2.64 × 102 

Uranus' Satellites 
A~ = 3.03 × 10 -:0 

a = 2.31 
( t a ) 4  = 1.8 

Jupiter's Satellites 
A~=5.7  × 10 -8 

a = 2.24 
( ½ a ) ~  = 1.4  

Therefore  the  r a r i t y  of  the  solar sys t em is 
g iven b y  the  v e r y  small  n u m b e r  

P '  < 1 .4  × 10 -13. (50) 

I n  order  to  eva lua te  the  resul t  ob ta ined  we 
observe  t h a t  the  n u m b e r  of  s ta rs  in our  
ga l axy  is of  the  order  of  1011 . E v e n  if  each 
s ta r  were to be  p rov ided  wi th  a p l a n e t a r y  
sys tem,  our  ga l axy  would no t  be sufficient 
to  ob ta in  b y  chance even  one sys t em 
similar  to  the  solar sys tem.  At  the  presen t  
t ime  people do no t  ven tu r e  to  press the i r  
exclusiveness to  such an  extent .  Ra the r ,  
the  opposi te  t endency  can be observed.  

The  a rgumen t s  p resen ted  herein do no t  
cons t i tu te  a s t r ic t  proof.  Only a fo rmal  
t heo ry  of resonance s ta tes  in a comple te  
sys t em could provide  such a proof.  Thus  
the  appl icabi l i ty  of  the  theo ry  of  per -  
t u rbed  H a m i l t o n i a n  sys t ems  to  the  
solar sys t em is quite quest ionable.  This  
t heo ry  which in fac t  comes f rom celestial 
mechanics  and  forms  one of  the  mos t  
interest ing branches  of  m a t h e m a t i c s  is 
based  on the  general  s ta te  of  the  f requency  
vec tor  of  a sys tem.  

NOTE A D D E D  IN PROOF 29 MAY 1969 

The  au thor  is indeb ted  to S. F. D e r m o t t  
(1969) who indicated an error  in the  va lue  
for the  f requency  of  Miranda  quoted  b y  
Molchanov (1968). The correct  value,  
eoobs= 6.157 leads to  a resonance vec to r  
( 1 - 1 - 1  0 - 1 )  in As, ins tead of  the  in- 
correct  (1 - 1  - 1  0) and  to the  correct  va lue  
of  o~t~o~ = 6.181. 

The  resul ts  of  the  calculat ions are as 
follows : 

P h  < 1.8 × 10 -4 (47) 

P$ < 7.2 x 10 -z  (48) 

P ~  < 6.3 × 10 -s .  (49) 

a This is the frequency scale given by the 
frequency of the most massive body in any 
given system. 
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